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1 Algorithm Descriptions

Perceptron
The perceptron is among the earliest algorithms used for supervised learning and functions as a linear classifier. This
algorithm establishes a dividing line that optimally separates different labeled data categories for classification purposes.

f(x) =

{
1 if w · x+ b > 0

0 otherwise

In this context, w represents the weight vector and x is the input vector. The term b denotes the bias, which adjusts the
decision boundary, shifting it from the origin.

Implementation Details
Our Perceptron class is initialized with several parameters:

• learning rate: This parameter controls the step size during the learning process, helping to converge to a minimum
of the loss function.

• n iterations: Defines the number of times the algorithm will iterate over the entire dataset, allowing for the refinement
of weights with each pass.

• n classes: Specifies the number of distinct output classes. If greater than 2, the Perceptron is configured for multiclass
classification.

Training Process
During training:

1. Training data is augmented with a bias term to handle the bias weight.

2. Weights are initialized as zero vectors (or matrices, in the case of multiclass classification).

3. For each iteration and each example:

• Compute the dot product of weights and inputs to make predictions.

• In multiclass settings, use a one-vs-all strategy by updating the weights of the predicted and actual classes differ-
ently.

• For binary classification, update weights based on the error between the predicted and actual labels.

4. Validation is performed at the end of each iteration to monitor performance and possibly update the model with the
best observed weights.

Prediction Process
For making predictions:

• Input features are also augmented with a bias term.

• The trained weights are used to compute the class scores.

• The final prediction is determined by the sign of the dot product (in binary classification) or by selecting the class with
the highest score (in multiclass classification).

Time Complexity
The implementation includes timing the training process, providing insights into the computational cost associated with the
training for different classification tasks (digit vs. face recognition).
Neural Network
Our neural network takes in the input layer of 784 or 4,200 depending on if you are inputting the digit or face. We put in 128
nodes in our hidden layer for both digit and face as we found that to be a sweet spot. It starts with forward propagation,
where an input layer is a flattened array of 0’s and 1’s. Here is the math behind forward propagation:

Z[1] = w[1]A[0] + b[1]
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where A[0] is the input layer and Z[1] is the unactivated first layer. After this, we apply an activation function, in which we
chose ReLU, which stands for rectified linear unit.

A[1] = ReLU(Z[1])

Z[2] = w[2]A[1] + b[2]

A[2] = softmax(Z[2])

Softmax converts the output logits into probabilities by applying the function:

softmax(zi) =
ezi∑
j e

zj

To prevent overfitting, we incorporate L2 regularization, which penalizes the magnitude of the weights, into our loss function.
This is done by adding a regularization term to the loss, calculated as λ

∑
i w

2
i , where λ is the regularization strength. In

our case, we used 0.001 for digits and 0.01 for faces as we found it fit best.
Now we perform backward propagation to better adjust weights and biases.

DZ[2] = A[2]− Y

Where Y is the one-hot encoded output and DZ[2] represents the error at the output layer.

DW [2] =
1

m
DZ[2]A[1]T

DB[2] =
1

m

∑
DZ[2]

DW[2] and DB[2] These are the gradients of the loss function with respect to weights and biases at the second layer.

DZ[1] = w[2]TDZ[2] ∗ g′(Z[1])

DZ[1]: The gradient of the loss.

DW [1] =
1

m
DZ[1]xT

DB[1] =
1

m

∑
DZ[1]

DW[1] and DB[1] are the gradients for the first layer.
Update Step:

w[1] = w[1]− αDW [1]

b[1] = b[1]− αDB[1]

w[2] = w[2]− αDW [2]

b[2] = b[2]− αDB[2]

Where α is the learning rate
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2 Features

We extracted the data by extracting all pixels, 28x28 equals 784 for digits and 60x70 equals 4,200 for faces, and counted as
a 1 if the character was a # or a +. We then flattened the array and used that as our input layer. For digits, we found that
adding the amount of pixels in the 4 different quadrants gave positive feedback regarding perceptron and the neural network
only for digits, and negatively affected faces. So we only applied this feature to digits.

3 Evaluation

Training Perceptrons:
Digit
Training Percentage Time(s) Accuracy(%)

10 4.073 74.0
20 6.276 75.0
30 9.710 76.8
40 10.831 79.1
50 13.100 80.6

60 15.210 82.2

70 17.696 82.6

80 19.342 81.9

90 21.708 82.1

100 24.291 82.3

Face

Training Percentage Time(s) Accuracy(%)

10 2.451 72.7
20 2.927 78.8
30 2.991 82.0
40 3.230 83.3
50 3.543 85.3

60 3.855 86.7

70 3.671 84.7

80 3.698 86.7

90 4.095 85.3

100 4.365 88.0
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Training Neural Networks:
Digit
Training Percentage Time(s) Accuracy(%)

10 4.131 70.2
20 10.478 79.3
30 10.923 82
40 15.964 83
50 20.479 84.1

60 24.770 85.1

70 28.031 85.8

80 32.536 86.0

90 37.010 86.2

100 42.408 86.6

Face

Training Percentage Time(s) Accuracy(%)

10 7.106 61.3
20 9.446 81.3
30 11.388 85.3
40 15.115 88.7
50 14.900 88.7

60 17.785 90.0

70 20.669 88.0

80 21.270 92.0

90 24.359 92.7

100 26.019 91.3
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4 Performance of each algorithm

Confusion Matrix of Digits:

Confusion Matrix of Faces:
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Training Loss and Accuracy for Digit Neural Network over Epochs:

Training Loss and Accuracy for Faces Neural Network over Epochs:
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1. Digits: Training Data vs Run Time - This graph illustrates how the training time required for the digit recognition
model increases as the percentage of the training data used increases, providing insights into the computational cost associated
with training on larger datasets.

2. Faces: Training Data vs Run Time - This plot shows the relationship between the amount of face data used for
training and the time it takes to train the model, highlighting the scalability and efficiency of the face recognition model
under different data volumes.
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3. Digits: Training Data vs Prediction Error - The graph depicts the prediction error of the digit recognition model
as a function of the training data size, showing how model accuracy improves as more data is utilized during training.

4. Faces: Training Data vs Prediction Error - This plot tracks the prediction error for the face recognition model
across varying sizes of training data, illustrating how errors decrease and performance improves with more comprehensive
training.
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5. Digits: Training Data vs Accuracy - The graph displays the accuracy of the digit recognition model as training
data size increases, emphasizing the positive impact of more extensive training datasets on model performance.

6. Faces: Training Data vs Accuracy - This plot demonstrates the accuracy of the face recognition model as a
function of the amount of data used for training, revealing how the model’s ability to correctly identify faces enhances with
greater data input.


